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Fig. 1: Behavior Foundation Model enables humanoid robots to perform a variety of behaviors in a zero-shot manner,
including (1) a swimming pose, (2) sitting down on the ground, (3) standing up from the ground, and (4) butterfly kick. It
also facilitates efficient acquisition of new behaviors such as (5) a forward roll and (6) a side salto.

Abstract— Whole-body control (WBC) of humanoid robots
has witnessed remarkable progress in skill versatility, enabling
a wide range of applications such as locomotion, teleoperation,
and motion tracking. Despite these achievements, existing WBC
frameworks remain largely task-specific, relying heavily on
labor-intensive reward engineering and demonstrating limited
generalization across tasks and skills. These limitations hinder
their response to arbitrary control modes and restrict their
deployment in complex, real-world scenarios. To address these
challenges, we revisit existing WBC systems and identify a
shared objective across diverse tasks: the generation of ap-
propriate behaviors that guide the robot toward desired goal
states. Building on this insight, we propose the Behavior Foun-
dation Model (BFM), a generative model pretrained on large-
scale behavioral datasets to capture broad, reusable behavioral
knowledge for humanoid robots. BFM integrates a masked
online distillation framework with a Conditional Variational
Autoencoder (CVAE) to model behavioral distributions, thereby
enabling flexible operation across diverse control modes and
efficient acquisition of novel behaviors without retraining from
scratch. Extensive experiments in both simulation and on a
physical humanoid platform demonstrate that BFM generalizes
robustly across diverse WBC tasks while rapidly adapting to
new behaviors. These results establish BFM as a promising
step toward a foundation model for general-purpose humanoid
control. Videos and supplementary materials are available at
bfm4humanoid.github.io.

I. INTRODUCTION
Humanoid robots are capable of executing a wide range

of whole-body control (WBC) tasks, including language
interaction [1, 2], human teleoperation [3–5] and whole-
body motion tracking [6, 7]. Despite this versatility, most
existing WBC systems are typically designed for specific
control modes. For example, a motion tracking policy accepts
only reference motions, whereas a locomotion policy re-
sponds exclusively to velocity commands. Such rigid special-
ization of control modes hinders cross-task generalization:
a locomotion policy, for instance, cannot directly exploit
reference motions for whole-body tracking. Recent studies
have attempted to support multiple control modes with mask
strategies. However, these approaches are either confined
to simplified virtual avatars [8] or prioritize a fixed set of
control modes [9], thus failing to accommodate arbitrary
control modes on real humanoid robots. We argue that the
root cause of this limitation lies in the absence of a unified
formulation across diverse tasks. To address this challenge,
we revisit the design of existing WBC systems and make a
key observation: although control modes differ, the resulting
outcomes of these systems, whether walking or dancing,
are all fundamentally behaviors of humanoid robots, which
naturally serve as a unified formulation across diverse tasks.

https://bfm4humanoid.github.io


Under this perspective, task-specific control modes, whether
velocity commands, VR signals or reference motions can all
be interpreted as distinct specifications of the behaviors.

One behavior can often be specified through multiple
control modes. A simple yet illustrative example is that
the behavior of walking forward can be learned under both
locomotion and motion tracking settings. This observation
suggests that, despite variations in control modes, existing
WBC systems ultimately pursue a shared objective: the
generation of appropriate behaviors. Such a perspective
motivates the decoupling of behaviors from control modes,
thereby shifting the paradigm from isolated task learning
toward holistic behavior learning. Inspired by the success of
foundation models in other domains [10], if we may pretrain
a foundation model on large and diverse behavioral datasets,
it may encode a broad spectrum of behavioral knowledge,
which can then be applied to a variety of downstream tasks.

To this end, we introduce the Behavior Foundation
Model (BFM) for humanoid robots, a generative model
pretrained on large-scale behavioral datasets to capture broad
and reusable behavioral knowledge. BFM can be directly
steered by diverse control modes to accomplish correspond-
ing tasks, while also enabling the efficient acquisition of
novel behaviors without the need of retraining from scratch.
In general, BFM establishes a flexible and generalizable
framework for humanoid control, highlighting its potential as
a foundation for the next generation of WBC system design.

To realize this vision, we first adopt motion imitation
as a common abstraction of behaviors to train a proxy
agent in simulation. Then, we pretrain BFM using a masked
online distillation framework combined with a Conditional
Variational Autoencoder (CVAE) [11], which provides a ver-
satile control interface capable of supporting diverse control
modes as well as a structured latent space that facilitates
both behavior composition and modulation. Furthermore, we
integrate residual learning [12] into our framework, enabling
efficient acquisition of novel behaviors by leveraging the
behavioral knowledge already encoded in the BFM. As
presented in Figure 1, the overall framework demonstrates
both versatility and robustness in real-world deployment.

In summary, our contributions are threefold: 1) we present
Behavior Foundation Model for humanoid robots, shifting
the focus of humanoid control from holistic task learning to
unified behavior learning; 2) we demonstrate our framework
integrating masked online distillation and CVAE can be
directly steered for diverse WBC tasks and may efficiently
acquire new behaviors via residual learning without retrain-
ing from scratch; 3) extensive experiments in both simulation
and on a real humanoid robot validate expressiveness and
effectiveness of our BFM, highlighting its potential as a
foundation for developing general-purpose humanoid robots.

II. RELATED WORK

A. Humanoid Whole-body Control

Existing WBC systems for humanoids can be generally
categorized by their control modes ranging from abstract
to concrete. The most abstract control mode is natural

language [1, 2] which may correspond to a series of fea-
sible behaviors that all satisfy the given instructions. A
more concrete and widely adopted control mode, especially
for locomotion and loco-manipulation, involves the velocity
commands and base height commonly combined with other
signals like gait and posture [13] , upper-body joint positions
from exo-skeleton [4] or VR devices with inverse kinematics
(IK) [5]. Besides processing VR signals with IK, other
teleoperation systems [3] directly map kinematic data from
VR controllers to the humanoid, enabling highly expressive
and accurate whole-body control. The most concrete control
mode for existing WBC systems is motion tracking which
provides nearly complete information about the reference
pose either from offline datasets [7] or online motion cap-
ture systems [14]. While these systems produce impressive
results, their control mode is often determined at design time
and therefore lack cross-task generalization. HOVER [9]
attempts to address this by employing a unified policy with a
masking strategy to achieve multi-modal control, demonstrat-
ing versatile humanoid control across diverse WBC tasks.

B. Behavior Foundation Model

Recent advances in reinforcement learning has led to
Behavior Foundation Models, which exhibit versatile be-
havior generation and strong generalization across diverse
tasks. Existing works have implemented BFM from distinct
perspectives. Motivo [15] and its series of works use forward-
backward representations to enable unsupervised learning
on reward-free transitions, yielding near-optimal policies for
zero-shot inference across diverse tasks. MaskedMimic [8]
and HOVER [9] employ online masked distillation to train
goal-conditioned policies, which also allows zero-shot gen-
eralization across tasks and contexts. Our framework draws
inspiration from the latter line of work but differs in key
aspects. HOVER’s two-stage mask strategy still prioritizes
specific control modes, while our BFM supports arbitrary
modes through direct application of sparsity mask. Masked-
mimic focuses on simplified virtual avatars and lacks the
latent space analysis to clarify advantages of CVAE over
other generative models, while our BFM targets real-world
humanoids and reveals the latent space properties for appli-
cations like behavior composition and modulation. Through
both theoretical and empirical contributions, our BFM offers
a systematical analysis of the underlying unified formulation
existing models have actually learned and enables a wide
range of downstream applications on real humanoid robots.

III. PROXY AGENT TRAINING

A. Behaviors under Reinforcement Learning Formulation

We formulate the problem of humanoid control as a
goal-conditioned reinforcement learning (RL) task, where a
policy π is trained to achieve certain objectives. The state
st comprises both the humanoid’s proprioception spt and the
goal state sgt . Using the humanoid’s proprioception spt and the
goal state sgt , the reward function is defined as rt = R(spt , s

g
t )

for policy optimization. The action at represents the target
joint positions for humanoids, which are then fed into the PD
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Fig. 2: Overview of BFM Implementation. (a) Human motion dataset is retargeted to humanoid robots for proxy agent
training. (b) The proxy agent is trained via motion imitation which has access to all information in simulators. (c) One behavior
can be specified in multiple control modes from abstract textual instructions to concrete whole-body joint positions, resulting
distinct goal states. We simplify the activation of distinct control modes to applying mask to a unified control interface.
This interface is restricted to the union of root, kinematic position, and joint angle, emphasizing our focus on low-level
humanoid control. (d) We model the BFM with a CVAE and employ the DAgger framework for BFM pretraining, providing
a structured latent space to encode extensive behavioral knowledge.

controller to actuate the robot’s degrees of freedom. Proximal
Policy Optimization (PPO) algorithm [16] is employed to
maximize the cumulative reward E[

∑T
t=1 γ

t−1rt].
With the formulation above, we define behaviors as trajec-

tories over the humanoid’s proprioceptive states and actions.
We particularly exclude task-related goal states sgt from
trajectories, as we interpret them as external motives that
drive the generation of appropriate behaviors. Such exclusion
avoids pre-determination of control modes, allowing behav-
iors to be a unified formulation for humanoid control.

In order to distinguish the observable states during real-
world deployment from the privileged states in simulators,
we use sp,simt and sg,simt to represent privileged states in sim-
ulators and sp,realt and sg,realt to represent observable states
available during real-world deployment. With such notations,
the behavior is defined as trajectories over sp,realt and at, ex-
pressed as τ = [sp,real1 , a1, s

p,real
2 . . . , sp,realT−1 , aT−1, s

p,real
T ].

B. Human Motion Retargeting
Human motion dataset plays an important role in hu-

manoid behavioral dataset preparation for their diversity
and high quality. We select the publicly available AMASS
dataset [17] where each motion sample is parameterized
by the SMPL model [18]. To bridge the embodiment gap
between SMPL human model and humanoid robots, we
employ a two-stage retargeting approach [19]. First, we
optimize the shape parameter of SMPL model for humanoid
robots by minimizing distances between selected links in

the rest pose. Second, we optimize the humanoid’s root
translation, orientation and joint positions by minimizing
distances between selected links throughout the whole se-
quence. Additional regularization terms are added to avoid
aggressive behaviors and ensure temporal smoothness.

Unlike previous works which use a motion imitator trained
with privileged information in simulators to further filter the
dataset, we directly use the raw dataset for BFM pretraining.
C. Proxy Agent Training via Motion Imitation

Instead of organizing behavioral dataset as offline trajec-
tories for BFM pretraining, we train a proxy agent denoted
as πproxy using motion imitation. The obtained proxy agent
may provide actions given the current proprioceptive state
and goal state derived from the reference motion, which may
generate quantities of behavioral data by online rolling out.
State Space Design. The state space of the proxy agent is
comprised of the privileged proprioception and goal state
in simulators. The privileged proprioception for proxy agent
is defined as sp,simt ≜ [pt, qt, θt, ṗt, q̇t, ωt, at−1], which
contains the humanoid rigid-body position pt, joint position
qt, orientation θt, linear velocity ṗt, joint velocity q̇t, angular
velocity ωt and previous action at−1. The privileged goal
state is defined as sg,simt ≜ [p̂t+1 − pt, q̂t+1 − qt, θ̂t+1 ⊖
θt, v̂t+1 − vt, ω̂t+1 − ωt, p̂t+1 − proott , θ̂t+1 ⊖ θroott ], which
contains the one-frame difference between the reference pose
(p̂t+1, q̂t+1, θ̂t+1, v̂t+1, ω̂t+1) and the current pose. proott

refers to the root translation and θroott refers to the root



TABLE I: Reward Designs for Proxy Agent
Term Weight Term Weight

Task Reward
Body position 1.0 Body position (selected keypoint) 1.6

Body position (feet) 2.1 Body rotation 0.5

Body velocity 0.5 Body angular velocity 0.5

DoF position 0.75 DoF velocity 0.5

Penalty
Torque limits −5.0 DoF position −10.0

Dof Velocity −5.0 Termination −200.0

Regularization
Torque −0.000001 Action rate −0.5

Feet orientation −2.0 Feet heading alignment −0.02

Feet air time −10.0 Slippage −1.0

Hip pos −1.0 Close feet distance -0.5

TABLE II: Domain Randomization

Term Value Term Value

Dynamics

Base CoM offset U(−0.1, 0.1) Link mass U(0.9, 1.1)×default

Friction U(0.5, 1.2) P gain U(0.9, 1.1)×default

D gain U(0.9, 1.1)×default Torque RFI [20] 0.05×torque limit

External Perturbations

Push interval [5, 10] Max push velocity 1.0

orientation of the current pose. All these goal states are
rotated to the local coordinate of the current frame.
Reward Design and Domain Randomization. We formu-
late the reward rt as a weighted sum of three components:
1) task rewards for motion imitation, 2)regularization, and
3)penalty, as detailed in Table I. We employ curriculum
learning to the regularization and penalty terms, encouraging
the policy to focus on motion imitation initially and gradually
leverage penalty and regularization to shape the behaviors.
We also apply domain randomization during training by
randomizing dynamics and applying external perturbations.
Details of domain randomization are listed in table II.
Reference State Initialization and Early Termination.
Proper initialization is crucial for motion imitation. We em-
ploy the Reference State Initialization (RSI) framework [21],
where the starting point of the reference motion is randomly
sampled and the robot’s initial state is derived from the
corresponding reference pose. To facilitate efficient training,
we implement early termination to avoid collecting invalid
data. Unlike previous works that rely on multiple termination
conditions (e. g. , gravity, height), we simplify the conditions
to a single tracking tolerance: the episode terminates if
the average link distance between the robot and reference
pose exceeds certain threshold. This design avoids direct
termination when the gravity or height termination conditions
are triggered after RSI (e. g. getting up from the ground).
Hard Negative Mining and Motion Filtering. When
training on large datasets, the motion imitation policy may
converge to an average point, thereby hindering full coverage
of the whole dataset. To address this issue, we employ the
strategy of hard negative mining by periodically evaluating
our policy over the entire dataset and dynamically adjust-
ing the sampling probability for each motion sample. If
the policy fails to track a particular sample, its sampling
probability is increased by a predefined factor, whereas
successful tracking leads to a corresponding decrease. When

the policy’s success rate over the entire dataset plateaus and
ceases to improve, we apply a filtering mechanism to the
original motion dataset. This process identifies samples that
persistently fail to be learned, classifying them as implausible
instances beyond the capabilities of the current proxy agent.

IV. BFM PRETRAINING

A. BFM under Reinforcement Learning Formulation
The Behavior Foundation Model is a generative model

tasked with learning the underlying distribution of demon-
strated behaviors, P (τ). Under the Markov assumption, the
pretraining objective reduces to maximizing the expected
log-likelihood over the dataset D = {(sp,reali , ai)}Mi=1 of M
state-action pairs by optimizing the model parameters θ:

max
θ

E
(s

p,real
t ,at)∼D[log πθ(at|sp,realt )] (1)

A monolithic policy πθ(at|sp,realt ) is ineffective for con-
trol. We introduce the goal state sg,realt and express the policy
as a marginalization over possible goal states in the dataset:

log πθ(at|sp,realt ) = logE
s
g,real
t ∼p(s

g,real
t |sp,real

t )

[πθ(at|sp,realt , sg,realt )]
(2)

By applying the Jensen Inequality, we may obtain a
tractable lower bound as a surrogate of the original objective:

logE
s
g,real
t ∼p(s

g,real
t |sp,real

t )
[πθ(at|sp,realt , sg,realt )]

≥E
s
g,real
t ∼p(s

g,real
t |sp,real

t )
[log πθ(at|sp,realt , sg,realt )]

(3)

The complete pretraining objective for our BFM is then
to maximize the lower bound over the entire dataset:

max
θ

E
(s

p,real
t ,a)∼D[E

s
g,real
t ∼p(s

g,real
t |sp,real

t )

[log πθ(at|sp,realt , sg,realt )]]
(4)

B. Real-world Proprioception State Design

The real-world proprioception is defined as sp,realt ≜
[qt−25:t, q̇t−25:t, w

root
t−25:t, gt−25:t, at−25:t−1] which contains

the joint position qt, joint velocity q̇t, root angular velocity
wroot

t , projected gravity gt and the last action at−1. We stack
these terms over the last 25 steps to represent proprioception.

C. Control Interface and Mask Strategy

The distribution p(sg,realt |sp,realt ) highly depends on how
you collect and organize the pretraining dataset where
goal states sg,realt are introduced for each state-action pair
(sp,realt , at). One behavior may be specified by diverse
control modes, resulting distinct goal states for current pro-
prioception. For example, as is presented in figure 2.c, textual
instruction, velocity command, whole-body joint positions as
well as their arbitrary combinations constitute distinct control
modes for specifying the behavior of walking forward. By
activating diverse control modes, we actually draw goal state
samples from the distribution p(sg,realt |sp,realt ), which allows
us to estimate the expectation over goal state distribution.

To simplify matters, we focus on low-level control modes
that directly specifies the target state for root, kinematic
positions and joint angles and design a control interface
compatible with all these control modes, which contains:



• Root Control: target root translation, orientation (spec-
ified by RPY), linear velocity and angular velocity;

• Kinematic Position Control: target rigid-body positions
of links rotated to the local frame of reference pose;

• Joint Angle Control: target joint angles for each motor;
By applying bit-wise binary mask to the control interface,
we may activate distinct control modes for low-level control,
allowing flexible and versatile control across diverse tasks.

In contrast to prior works [9] which adopt a two-stage
mask strategy, we directly sample each element of the mask
from a Bernoulli distribution B(0.5), facilitating application
of arbitrary control modes. To ensure stable pretraining, we
introduce a mask curriculum as a cold-start approach. The
sampling probability for each Bernoulli trial gradually decays
from an initial value of 1.0 towards 0.5 when the average
episode length exceeds a predefined threshold. We adopt a
relatively large decay factor in practice, resulting the cold-
start phase to span only several hundred episodes.

D. Modeling BFM with Conditional Variational Autoen-
coder

We adopt a Conditional Variational Autoencoder (CVAE)
to model the log-probability logP (at|sp,realt , sg,realt ). The
Evidence Lower Bound (ELBO) of CVAE is expressed as:

E
q(z|sp,simt ,s

g,sim
t )

[logP (at|sp,realt , sg,realt , z)

−DKL[q(z|sp,simt , sg,simt )||P (z|sp,realt , sg,realt )]]
(5)

We model the prior ρ, encoder ϵ and decoder D as Gaus-
sian distributions and for the decoder, we assume it has a
fixed variance. To encourage the latent space to encode more
behavioral knowledge, we remove sg,realt from the input of
decoder. Following previous works [8, 22], we design the
encoder to be a residual to the prior and include current
mask mt into the encoder input, which can be expressed as:

P (z|sp,realt , sg,realt ) = N (µρ(sp,realt , sg,realt ), σρ(sp,realt , sg,realt ))
(6)

q(z|sp,simt , sg,simt ) = N (µϵ(sp,simt , sg,simt ,mt) + µρ(sp,realt , sg,realt ),

σϵ(sp,simt , sg,simt )) (7)

P (at|sp,realt , sg,realt , z) = N (µD(sp,realt , z), σfixed) (8)

E. Online Distillation
As we have prepared our behavioral dataset as a proxy

agent, we employ the DAgger framework [23] to optimize
the objective of BFM’s pretraining. Specifically, for each
episode, we roll out the current BFM πθ(at|sp,realt , sg,realt )
in simulation to obtain trajectories of (sp,realt , sg,realt ). At
each timestep, we also compute the corresponding privileged
states (sp,simt , sg,simt ) and query the proxy agent for the
reference action ât. Parameters of BFM is then updated by:

LDAgger = ||ât − at||22
LKL = DKL(qϵ(zt|sp,simt , sg,simt )||Pρ(z|sp,realt , sg,realt ))

L = LDAgger + λKLLKL (9)

where ât is the reference action from proxy agent, at is the
action taken by current BFM, DKL is the KL-Divergence op-
erator and λKL maintains balance between the reconstruction
quality and the latent space structural regularization. Domain
randomization, termination conditions and hard negative
mining strategy remain the same as proxy agent training.

V. BFM APPLICATION AND EXPERIMENTAL RESULTS

A. Experiment Setup

The training of our proxy agent and BFM is conducted in
IsaacGym [24], with 8192 parallel environments. To ensure
both the efficiency and persuasiveness of our evaluation, we
report metrics calculated based on IsaacGym and demon-
strate both the sim-to-sim results in Mujoco [25] and sim-to-
real results in real world. We adopt the Unitree G1 humanoid
robot [26] as an agile and powerful platform for real-world
deployment, which stands 1.3 meters tall and has 29 degrees
of freedom. To simplify the difficulty of control, we freeze
the wrists of both hands, resulting in 23 degrees of freedom.

B. Steering BFM with the Control Interface

As our BFM enables humanoid control via diverse control
modes, we first demonstrate its application of direct steering
for multiple WBC tasks. We select three prevailing WBC
tasks: whole-body motion tracking, VR teleoperation and
locomotion to demonstrate the effectiveness of our BFM.
For each task, we activate the corresponding control mode by
manually crafting and applying mask to the control interface.
Baselines. To prove that our BFM has encoded extensive
behavioral knowledge that can be directly steered by diverse
WBC tasks, we select HOVER[9] as a general baseline for
all the three tasks. For each task, we also select a specialist to
show that our BFM is as good as, if not better than, the spe-
cialists for they often indicate overfitting to a specific control
mode. We also train a BFM with the same architecture and
hyper-parameters from scratch with reinforcement learning to
ablate our options on the learning paradigm and the results of
proxy agent are also included in the table for motion tracking
and teleoperation. We select specialists with the same online
distillation process and follows their implementation to align
the training details which might vary from embodiment to
dataset. For whole-body motion tracking, we follow the
implementation of GMT [7] and for VR teleoperation, we
refer to the implementation of OmniH2O [3]. We use our
own implementation of specialists for the Locomotion task.
Metrics. For whole-body motion tracking and VR tele-
operation, their goal is to track the control signals while
demonstrating whole-body coordination. Therefore we adopt
the same metric set for these two tasks comprised of the
mean per-keypoint error (MPKPE) Empkpe(mm), mean per-
joint error (MPJPE) Empjpe(rad), root linear velocity track-
ing error Elin(m/s) and angular velocity tracking error
Eang(rad/s). For locomotion, its goal reduces to follow-
ing a velocity command specified by root linear velocity
on xy-plane and angular velocity along the z-axis. As a
consequence, we adopt a metric set which contains the
root linear velocity error on xy-plane Elin,xy and the root
angular velocity error along z-axis Eang,z . All the metrics
are evaluated on three datasets, the training set of AMASS,
the test set of AMASS and the 100STYLE dataset [27].
Experimental Results. As is demonstrated in Table III and
IV, our BFM consistently outperforms HOVER on almost
all metrics across all the tasks and datasets. Also, our BFM



TABLE III: Simulation evaluation of our BFM and baselines on VR teleoperation and motion tracking task. The most
significant results are highlighted in bold and wrapped by dark background color and the second significant results are
wrapped by light background color. For behavior modulation on motion tracking task, the results with the highest increments
relative to our BFM are highlighted in bold and wrapped by dark background color. The results with increments relative to
our BFM but not the most are wrapped by light background color.

AMASS Train AMASS Test 100Style

Method Empjpe ↓ Empkpe ↓ Elin ↓ Eang ↓ Empjpe ↓ Empkpe ↓ Elin ↓ Eang ↓ Empjpe ↓ Empkpe ↓ Elin ↓ Eang ↓

Proxy Agent 0.1864 49.3057 0.1469 0.9978 0.2137 56.1755 0.2631 1.3976 0.2460 64.1346 0.2036 1.2336

VR Teleoperation

Specialist 0.2113 65.4214 0.2375 1.0925 0.2555 80.5919 0.4779 1.5036 0.3062 89.9115 0.3189 1.1525
HOVER 0.2676 91.2667 0.5047 1.6988 0.3055 102.8428 0.6468 1.8716 0.3455 119.8896 0.5351 1.6553
BFM (RL from Scratch) 1.0516 399.6902 0.4976 2.0627 1.1672 403.8327 0.6528 2.3211 1.1300 429.2893 0.4418 1.6848
BFM (Ours) 0.2447 72.3615 0.4006 1.2177 0.2235 63.1388 0.3066 1.4632 0.3169 87.0725 0.3238 1.1361

Motion Tracking

Specialist 0.1895 53.9515 0.1586 1.0268 0.2247 73.6332 0.3034 1.4685 0.2491 67.7765 0.2128 1.2411
HOVER 0.2010 65.9742 0.2189 1.1599 0.2416 87.0678 0.3749 1.6554 0.2562 73.9817 0.2608 1.3369
BFM (RL from Scratch) 1.0503 400.1505 0.4973 2.0590 1.1689 404.7451 0.6533 2.3532 1.1215 429.5739 0.4422 1.6933
BFM (Ours) 0.1920 51.8372 0.1542 1.0142 0.2226 61.1236 0.3051 1.4358 0.2637 66.4027 0.2072 1.2790

Behavior Modulation on Motion Tracking

λ = 0.5 0.1893 50.4801 0.1564 1.0419 0.2227 58.9844 0.2767 1.4099 0.2583 63.0582 0.2116 1.3394
λ = 1.0 0.1875 49.8647 0.1609 1.0681 0.2223 58.7251 0.2870 1.4899 0.2562 62.5168 0.2224 1.3919
λ = 1.5 0.1869 50.1451 0.1675 1.0866 0.2224 60.4565 0.2990 1.4964 0.2567 64.0520 0.2370 1.4618
λ = 2.0 0.2625 76.2392 0.2615 1.5176 0.2254 67.6583 0.3158 1.5438 0.2625 76.2392 0.2615 1.5176

TABLE IV: Simulation Evaluation of BFM and baselines on
locomotion task across three datasets. The most significant
results are highlighted in bold and wrapped by dark back-
ground color and the second significant results are wrapped
by light background color.

AMASS Train AMASS Test 100Style

Experiment Elin,xy ↓ Eang,z ↓ Elin,xy ↓ Eang,z ↓ Elin,xy ↓ Eang,z ↓

Specialist 0.1201 0.4801 0.2168 0.6751 0.1496 0.5108
HOVER 0.1494 0.5518 0.2663 0.7624 0.1696 0.5707
BFM (RL from Scratch) 0.4314 1.2925 0.5513 1.4982 0.4015 1.0606
BFM (Ours) 0.1292 0.4974 0.2116 0.6744 0.1603 0.4973

is as good as, if no better than the specialists. We attribute
the conditions where specialists may outperform our BFM
to two reasons: 1) the specialists focus on a specific control
mode, naturally allowing better learning of an unchanged
setting. 2) the specialists may overfit to the training set under
specific control mode. Besides, we observe that our BFM
consistently outperforms the RL policy trained from scratch,
which confirms that our training paradigm is effective for
BFM pretraining. The overall results highlight our BFM’s
versatility and generalization ability across multiple tasks.

C. Behavior Composition and Modulation with BFM

One key advantage of using a CVAE to model the BFM
is that it provides a structured latent space that encodes a
broad spectrum of behavioral knowledge. To fully unleash
the potential of our BFM, we first perform latent analysis to
clarify how the latent space has been structured. Then based
on the analysis results, we further perform experiments to
demonstrate some unique and special properties of our BFM.
Latent Structure. We first choose five motions includ-
ing standing still, walking forward, walking backward, left

sidestep and right sidestep. Then we adopt the control mode
of motion tracking to collect latent sequences and apply the
t-SNE algorithm [28] to project the high-dimensional latent
variables into a 2D plane for visualization. As shown in
figure 3.b, we observe that 1) the projected latent variables
demonstrate clear directionality and symmetry. 2) While
humanoids are all initialized as the same standing pose, the
latent variables are pre-clustered instead of transiting from
center to diverse directions, indicating our model may have
learned strong prior over latent space. Overall, this analysis
confirms that the CVAE learns a meaningful and structured
latent manifold, which can be leveraged for diverse purposes.
Behavior Composition. We explore the possibility of inter-
polation in the latent space for producing novel behaviors.
We select the Roundhouse Kick as a difficult motion to per-
form and activates the control mode of root and keypoint sep-
arately. We observe that root-only control leads to a turning
movement without raising leg while keypoint-only control
results in raising leg without turning around. However, when
we linearly interpolate the latent variables from these two
control modes with a coefficient of 0.5, the humanoid could
complete the Roundhouse Kick motion, as is demonstrated
in figure 3.a. By gradually increasing the coefficient from 0
to 1, the humanoid exhibits a clear transition among root-
only control, full completion and keypoint-only control. The
overall results highlight the structure our BFM has acquired
which allows flexible compositions of diverse behaviors.
Behavior Modulation. We further explore the possibility of
extrapolation in the latent space for better alignment with
desired mode. We select the Butterfly Kick as a challenging
motion the model fails to directly perform under the motion
tracking mode, where it will lose its balance when landing on
the ground. We propose to obtain latent variables in a similar
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way to Classifier-free Guidance [29] in Diffusion models:

z = (1 + λ)µρ(sp,realt , sg,realt )− λµρ(sp,realt , ∅), λ > 0 (10)

We find that by setting λ as 0.5, the humanoid can now
maintain its balance when landing, as is demonstrated in
figure 3.c. To further clarify its effect, we apply this finding
to the motion tracking task. As is presented in table III,
when applying a medium coefficient, the tracking results
all achieve improvements to some extent. While a relatively
large coefficient may lead to degradation of performance,
indicating an excessive modulation towards the control mode.
D. Efficient Behavior Acquisition with BFM

By pretraining over large-scale behavioral dataset, our
BFM is equipped with sufficient behavioral knowledge for
efficient acquisition of novel behaviors. By focusing on
novel behaviors specified by reference motions, we still
adopt motion imitation as an effective paradigm for be-
havior learning. Specifically, we freeze all the parameters
of BFM and activate the control mode of motion tracking.
Upon our pretrained model, we learn a residual decoder
π(∆at|sp,realt , z) and the final action becomes a′t = at+∆at,
as is presented in figure 3.d. The training of residual model
follows the same configuration as the proxy agent, except we
activate termination curriculum [6] and adjust the threshold

based on the sequence length of each motion. To demonstrate
the effectiveness of residual learning, we select side salto as
a challenging motion that the BFM can not directly handle
and present the visualization results and curves for mean
keypoint deviations and mean episode lengths. As is shown
in figure 3.e, by comparing our methods of residual learning
on BFM with methods of learning RL policy from scratch,
the existence of BFM avoids inefficient exploration at early
stage of training and achieves more accurate tracking results
based on the behavioral knowledge our BFM has learned.

VI. CONCLUSION

In this work, we introduce Behavior Foundation Model
for humanoid robots, a generative model for behaviors pre-
trained on large-scale behavioral dataset to encode exten-
sive, reusable behavioral knowledge. Based on mathematical
analysis under RL formulation, we implement our BFM
through the training of a proxy agent and online masked
distillation by a CVAE. Comprehensive evaluations consoli-
date that our BFM achieves strong capabilities of cross-task
generalization, behavior composition, behavior modulation
and efficient acquisition of novel behaviors. Future work
may further extend the current simplified control interface
to support a broader range of control modes.
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